metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

µ-Decanedioato-bis[aquabis(1,10phenanthroline- $\kappa^2 N, N'$)manganese(II)] dinitrate-sebacic acid-water (1/1/2)

Ye-Qiang Feng,^a Jian Long^a and Juan Li^{b*}

^aKey Laboratory for Information Systems of Mountainous Areas and Protection of the Economical Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, People's Republic of China, and ^bCollege of Geographical and Environmental Sciences, Guizhou Normal University, Guiyang 550001, People's Republic of China

Correspondence e-mail: fengyeqiang6699@126.com

Received 15 November 2010; accepted 9 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.036; wR factor = 0.085; data-toparameter ratio = 17.1.

In the title complex, $[Mn_2(C_{10}H_{16}O_4)(C_{12}H_8N_2)_4(H_2O)_2]$ - $(NO_3)_2 \cdot C_{10}H_{18}O_4 \cdot 2H_2O$, the asymmetric unit contains onehalf of the centrosymmetric dinuclear complex cation, one uncoordinated water molecule, one-half of a free sebaic acid (decanedioic acid) molecule that is also completed by inversion symmetry, and one disordered nitrate anion [occupancy ratio 0.454 (4):0.544 (6)]. The Mn^{II} atoms are each octahedrally surrounded by four N atoms from two 1,10phenanthroline (phen) ligands, one O atom from one carbonyl group of the bridging sebacate ligand and one O atom of a water molecule. The crystal structure is stabilized by intermolecular $O-H \cdots O$ hydrogen bonds.

Related literature

For applications of carboxylic metalorganic complexes, see: Lehn (2007); Wang et al. (2010); Fang & Zhang (2006). For related structures, see: Wei et al. (2002).

Experimental

Crystal data

$[Mn_2(C_{10}H_{16}O_4)(C_{12}H_8N_2)_4-$	$\beta = 66.845 \ (1)^{\circ}$
$(H_2O)_2](NO_3)_2 \cdot C_{10}H_{18}O_4 \cdot 2H_2O$	$\gamma = 81.971 \ (1)^{\circ}$
$M_r = 1429.00$	V = 1679.79 (7) Å ³
Triclinic, $P\overline{1}$	Z = 1
a = 11.6712 (3) Å	Mo $K\alpha$ radiation
b = 12.5316 (3) Å	$\mu = 0.46 \text{ mm}^{-1}$
c = 12.8561 (3) Å	T = 296 K
$\alpha = 76.678 \ (1)^{\circ}$	$0.58 \times 0.33 \times 0.13 \text{ mm}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2002) $T_{\min} = 0.837, T_{\max} = 0.943$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.085$ S = 1.037666 reflections

7666 independent reflections 6144 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

25302 measured reflections

449 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1A\cdots O2^{i}$	0.85	1.83	2.6680 (16)	170
$O2W - H2D \cdots O6A^{ii}$	0.85	2.24	2.991 (6)	148
$O2W - H2D \cdots O7^{ii}$	0.85	2.22	3.020 (2)	157
$O1W - H1B \cdots O6B$	0.89	1.87	2.710 (4)	156
$O1W-H1B\cdots O5A$	0.89	1.99	2.830 (5)	156
$O2W - H2C \cdots O2$	0.85	1.90	2.7396 (19)	170
$O4-H4C\cdots O2W$	0.85	1.78	2.622 (2)	172

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve

structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2333).

References

Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801–4810.

Lehn, J.-M. (2007). Chem. Soc. Rev. 36, 151-160.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, G.-H., Lei, Y.-Q. & Wang, N. (2010). Cryst. Growth Des. 10 4060-4067.

Wei, D.-Y., Kong, Z.-P. & Zheng, Y.-Q. (2002). Polyhedron, 21, 1621–1628.

Acta Cryst. (2011). E67, m80-m81 [doi:10.1107/S1600536810051615]

μ -Decanedioato-bis[aquabis(1,10-phenanthroline- $\kappa^2 N, N'$)manganese(II)] dinitrate-sebacic acid-water (1/1/2)

Y.-Q. Feng, J. Long and J. Li

Comment

The design and synthesis of carboxylic metal-organic complexes have been an increasing interest for many years owing to their potential practical applications, such as fluorescence, magnetism (Wang, *et al.*, 2010; Fang, *et al.*, 2006; Lehn, *et al.*, 2007). Interested in this field, herein, we report the crystal structure of a new manganese^{II} complex with the sebacic acid ligand. The asymmetric unit contains a centrosymmetric dinuclear complex cation, one water molecule, a free sebacic acid and one nitrato anion. The Mn atoms are each octahedrally surrounded by four N atoms from two phen ligands, one O atom from one carbonyl group of the bridging sebacato ligand and one O atom of water molecule. The basal Mn—O and Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–1.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths are of normal values. The sebacate anion acts as monodentate ligand . The crystal structures is stabilized by three and four intermolecular and intramolecular O—H···O hydrogen bonds respectively, Fig.1. The phen ligands make a dihedral angle of 77.4 (3)°.

Experimental

All reagents were used as received without purified. The title compound was obtained by adding sebacic acid (1 mmol) and 1,10-phenanthroline(phen) (2 mmol) in fifty percent ethanol solution (20 ml), then $Mn(NO_3)_2$ (1 mmol) dissolved in distilled water (10 ml) is slowly dripped into above solution, mixed round for five hours, filtrated, and single crystals were obtained after one week.

Refinement

All H atoms attached to C atoms and O(hydroxyl) atom were fixed geometrically and treated as riding with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic) and O—H = 0.85 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(O)$. H atoms of water molecule were located in a difference Fourier map and included in the subsequent refinement using restraints (O—H= 0.82 (1) Å and H···H= 1.30 (2) Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. The atom O5A and O6A are disordered. They were modelled using a split model with refined population parameters [O5A/O5B=0.456 (4)/0.544 (4); O6A/O6B=0.456 (4)/0.544 (4)].

Figures

Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms were omitted for clarity.

μ -Decanedioato-bis[aquabis(1,10-phenanthroline- $\kappa^2 N, N^1$)manganese(II)] dinitrate-sebacic acid-water (1/1/2)

Crystal data

$[Mn_2(C_{10}H_{16}O_4)(C_{12}H_8N_2)_4(H_2O)_2](NO_3)_2 \cdot C_{10}H_{18}O_2 + C_{10}$	4 Z #I <u>1</u> O
$M_r = 1429.00$	F(000) = 746
Triclinic, <i>P</i> T	$D_{\rm x} = 1.413 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.6712 (3) Å	Cell parameters from 9906 reflections
b = 12.5316 (3) Å	$\theta = 1.7 - 27.6^{\circ}$
c = 12.8561 (3) Å	$\mu = 0.46 \text{ mm}^{-1}$
$\alpha = 76.678 \ (1)^{\circ}$	T = 296 K
$\beta = 66.845 \ (1)^{\circ}$	Block, colorless
$\gamma = 81.971 \ (1)^{\circ}$	$0.58 \times 0.33 \times 0.13 \text{ mm}$
V = 1679.79 (7) Å ³	

Data collection

Bruker APEXII diffractometer	7666 independent reflections
Radiation source: fine-focus sealed tube	6144 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
ω scans	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002)	$h = -15 \rightarrow 14$
$T_{\min} = 0.837, T_{\max} = 0.943$	$k = -15 \rightarrow 16$
25302 measured reflections	$l = -16 \rightarrow 16$

Refinement

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Mn1	0.70121 (2)	0.230330 (18)	0.31787 (2)	0.03465 (8)	
01	0.53707 (11)	0.15166 (9)	0.36166 (10)	0.0456 (3)	
O2	0.38982 (10)	0.03550 (9)	0.41943 (10)	0.0441 (3)	
O1W	0.68822 (11)	0.16789 (10)	0.49202 (10)	0.0474 (3)	
H1A	0.6574	0.1060	0.5275	0.071*	
H1B	0.7441	0.1750	0.5212	0.071*	
N1	0.88153 (13)	0.12483 (11)	0.24456 (12)	0.0423 (3)	
N2	0.74524 (13)	0.24656 (11)	0.12571 (12)	0.0407 (3)	
N3	0.58719 (12)	0.39148 (10)	0.33027 (11)	0.0370 (3)	
N4	0.82861 (12)	0.36202 (10)	0.31342 (11)	0.0381 (3)	
C1	0.50113 (15)	0.05984 (12)	0.36745 (13)	0.0339 (3)	
C2	0.59493 (16)	-0.02534 (14)	0.31001 (15)	0.0413 (4)	
H2A	0.6080	-0.0840	0.3690	0.050*	
H2B	0.6740	0.0081	0.2641	0.050*	
C3	0.55376 (16)	-0.07434 (13)	0.23259 (14)	0.0409 (4)	
НЗА	0.6146	-0.1319	0.2030	0.049*	
H3B	0.4746	-0.1076	0.2785	0.049*	
C4	0.53961 (18)	0.00960 (14)	0.13196 (14)	0.0453 (4)	
H4A	0.6167	0.0470	0.0894	0.054*	
H4B	0.4740	0.0640	0.1615	0.054*	
C5	0.50857 (18)	-0.04110 (14)	0.05008 (15)	0.0478 (4)	
H5A	0.5750	-0.0947	0.0199	0.057*	
H5B	0.4325	-0.0799	0.0933	0.057*	
C6	0.67555 (19)	0.30097 (15)	0.06869 (16)	0.0524 (4)	
H6A	0.5980	0.3311	0.1103	0.063*	
C7	0.7121 (2)	0.31556 (18)	-0.05024 (18)	0.0651 (6)	
H7A	0.6596	0.3537	-0.0867	0.078*	
C8	0.8255 (2)	0.27326 (18)	-0.11219 (17)	0.0654 (6)	
H8A	0.8516	0.2828	-0.1919	0.078*	
С9	1.0253 (2)	0.1706 (2)	-0.11490 (19)	0.0692 (6)	
H9A	1.0561	0.1789	-0.1947	0.083*	
C10	1.0960 (2)	0.1170 (2)	-0.0567 (2)	0.0711 (7)	
H10A	1.1759	0.0903	-0.0974	0.085*	
C11	1.1218 (2)	0.04253 (18)	0.1314 (2)	0.0700 (6)	
H11A	1.2028	0.0157	0.0943	0.084*	
C12	1.0713 (2)	0.02624 (17)	0.2480 (2)	0.0679 (6)	
H12A	1.1171	-0.0116	0.2914	0.081*	
C13	0.94950 (19)	0.06706 (14)	0.30215 (18)	0.0543 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H13A	0.9145	0.0531	0.3823	0.065*
C14	0.90359 (19)	0.21517 (16)	-0.05620 (16)	0.0539 (5)
C15	0.85812 (16)	0.20248 (13)	0.06474 (14)	0.0412 (4)
C16	1.05239 (17)	0.09953 (16)	0.06647 (19)	0.0556 (5)
C17	0.93227 (15)	0.14120 (13)	0.12730 (15)	0.0418 (4)
C18	0.94555 (16)	0.34774 (14)	0.30703 (16)	0.0472 (4)
H18A	0.9895	0.2823	0.2891	0.057*
C19	1.00663 (18)	0.42543 (16)	0.32574 (18)	0.0558 (5)
H19A	1.0888	0.4114	0.3208	0.067*
C20	0.94419 (19)	0.52166 (16)	0.35118 (17)	0.0550 (5)
H20A	0.9829	0.5738	0.3652	0.066*
C21	0.7496 (2)	0.64238 (14)	0.38036 (16)	0.0539 (5)
H21A	0.7849	0.6969	0.3945	0.065*
C22	0.6327 (2)	0.65874 (14)	0.38290 (15)	0.0522 (5)
H22A	0.5887	0.7249	0.3979	0.063*
C23	0.45241 (18)	0.59084 (15)	0.36366 (15)	0.0508 (4)
H23A	0.4065	0.6569	0.3751	0.061*
C24	0.40184 (18)	0.50752 (16)	0.34740 (16)	0.0524 (5)
H24A	0.3222	0.5167	0.3455	0.063*
C25	0.47149 (16)	0.40809 (14)	0.33364 (15)	0.0444 (4)
H25A	0.4345	0.3505	0.3265	0.053*
C26	0.82112 (17)	0.54230 (13)	0.35622 (14)	0.0449 (4)
C27	0.76600 (15)	0.45891 (12)	0.33745 (13)	0.0368 (3)
C28	0.57400 (17)	0.57670 (13)	0.36306 (14)	0.0431 (4)
C29	0.63978 (15)	0.47586 (12)	0.34317 (13)	0.0359 (3)
O3	0.36732 (19)	0.40660 (15)	0.14822 (16)	0.0929 (6)
O4	0.28810 (17)	0.24951 (13)	0.16774 (15)	0.0837 (5)
H4C	0.2729	0.2445	0.2389	0.126*
C30	0.3445 (2)	0.34024 (18)	0.1066 (2)	0.0613 (5)
C31	0.3730 (2)	0.35127 (18)	-0.01941 (19)	0.0663 (6)
H31A	0.4293	0.2905	-0.0474	0.080*
H31B	0.4147	0.4188	-0.0610	0.080*
C32	0.2553 (2)	0.35228 (17)	-0.04290 (18)	0.0630 (5)
H32A	0.2779	0.3504	-0.1236	0.076*
H32B	0.2111	0.2868	0.0026	0.076*
C33	0.1694 (2)	0.45277 (16)	-0.01428 (18)	0.0585 (5)
H33A	0.1603	0.4618	0.0616	0.070*
H33B	0.2089	0.5168	-0.0692	0.070*
C34	0.0418 (2)	0.44959 (16)	-0.01543 (17)	0.0586 (5)
H34A	0.0022	0.3852	0.0387	0.070*
H34B	0.0503	0.4422	-0.0917	0.070*
N5	0.91636 (17)	0.22595 (15)	0.58128 (14)	0.0582 (4)
O5A	0.8094 (5)	0.2322 (5)	0.6183 (5)	0.0960 (12) 0.456 (4)
O6A	0.9670 (4)	0.1569 (6)	0.5070 (6)	0.0749 (10) 0.456 (4)
O5B	0.8208 (4)	0.2931 (4)	0.6291 (4)	0.0960 (12) 0.544 (4)
O6B	0.9028 (4)	0.1683 (5)	0.5265 (5)	0.0749 (10) 0.544 (4)
07	1.00394 (16)	0.24493 (15)	0.60047 (16)	0.0858 (5)
O2W	0.23404 (16)	0.21497 (15)	0.39055 (14)	0.0915 (6)
H2C	0.2807	0.1610	0.4072	0.137*

H2D	0.1631	0.2073	0.4453	3 0.1	37*	
Atomic disr	placement parameter	$s(\hat{A}^2)$				
1	U^{11}	1/22	LJ ³³	1/12	U ¹³	U^{23}
Mn1	0.03696 (14)	0.03139(12)	0.03438(13)	-0.00389(9)	-0.01003(10)	-0.00884(10)
01	0.03370(11)	0.0372 (6)	0.0569(7)	-0.0086(5)	-0.0166(6)	-0.0115(5)
02	0.0378 (6)	0.0412 (6)	0.0486 (7)	-0.0086(5)	-0.0098(5)	-0.0078(5)
O1W	0.0556 (7)	0.0497 (7)	0.0394 (6)	-0.0212(6)	-0.0201(6)	0.0020 (5)
N1	0.0450 (8)	0.0367 (7)	0.0458 (8)	-0.0011 (6)	-0.0159 (7)	-0.0119 (6)
N2	0.0434 (8)	0.0408 (7)	0.0376 (7)	-0.0067 (6)	-0.0122 (6)	-0.0098 (6)
N3	0.0390 (7)	0.0347 (7)	0.0356 (7)	-0.0025 (6)	-0.0115 (6)	-0.0080 (6)
N4	0.0399 (7)	0.0329 (7)	0.0387 (7)	-0.0045 (6)	-0.0112 (6)	-0.0062 (6)
C1	0.0390 (9)	0.0367 (8)	0.0284 (7)	-0.0053 (7)	-0.0160 (7)	-0.0031 (6)
C2	0.0416 (9)	0.0411 (9)	0.0445 (9)	-0.0006 (7)	-0.0184 (8)	-0.0115 (7)
C3	0.0465 (9)	0.0394 (8)	0.0372 (9)	-0.0020 (7)	-0.0138 (7)	-0.0115 (7)
C4	0.0561 (11)	0.0425 (9)	0.0383 (9)	-0.0007 (8)	-0.0173 (8)	-0.0116 (7)
C5	0.0605 (11)	0.0458 (9)	0.0404 (9)	-0.0028 (8)	-0.0208 (8)	-0.0113 (8)
C6	0.0587 (12)	0.0532 (11)	0.0496 (11)	-0.0059 (9)	-0.0248 (9)	-0.0084 (9)
C7	0.0830 (16)	0.0672 (13)	0.0547 (12)	-0.0159 (12)	-0.0371 (12)	-0.0025 (11)
C8	0.0900 (17)	0.0706 (14)	0.0373 (10)	-0.0302 (13)	-0.0197 (11)	-0.0062 (10)
С9	0.0680 (14)	0.0784 (15)	0.0474 (12)	-0.0259 (12)	0.0078 (11)	-0.0262 (11)
C10	0.0484 (12)	0.0748 (15)	0.0726 (15)	-0.0157 (11)	0.0129 (11)	-0.0374 (13)
C11	0.0425 (11)	0.0557 (12)	0.105 (2)	0.0026 (9)	-0.0155 (12)	-0.0288 (13)
C12	0.0599 (13)	0.0488 (11)	0.1039 (19)	0.0065 (10)	-0.0423 (14)	-0.0164 (12)
C13	0.0625 (12)	0.0409 (9)	0.0649 (12)	0.0035 (9)	-0.0297 (10)	-0.0137 (9)
C14	0.0610 (12)	0.0556 (11)	0.0406 (10)	-0.0240 (9)	-0.0041 (9)	-0.0155 (9)
C15	0.0445 (9)	0.0391 (8)	0.0377 (9)	-0.0137 (7)	-0.0064 (7)	-0.0124 (7)
C16	0.0410 (10)	0.0479 (10)	0.0722 (13)	-0.0077 (8)	-0.0057 (9)	-0.0252 (10)
C17	0.0391 (9)	0.0365 (8)	0.0476 (10)	-0.0092 (7)	-0.0068 (7)	-0.0165 (7)
C18	0.0418 (10)	0.0426 (9)	0.0553 (11)	-0.0039 (8)	-0.0160 (8)	-0.0087 (8)
C19	0.0467 (11)	0.0579 (11)	0.0655 (13)	-0.0139 (9)	-0.0218 (9)	-0.0092 (10)
C20	0.0591 (12)	0.0529 (11)	0.0585 (12)	-0.0211 (9)	-0.0220 (10)	-0.0105 (9)
C21	0.0723 (14)	0.0375 (9)	0.0505 (11)	-0.0141 (9)	-0.0160 (10)	-0.0121 (8)
C22	0.0748 (14)	0.0297 (8)	0.0444 (10)	-0.0015 (8)	-0.0135 (9)	-0.0095 (7)
C23	0.0590 (12)	0.0407 (9)	0.0433 (10)	0.0123 (8)	-0.0144 (9)	-0.0079 (8)
C24	0.0473 (10)	0.0580 (11)	0.0489 (11)	0.0091 (9)	-0.0194 (9)	-0.0092 (9)
C25	0.0437 (10)	0.0474 (9)	0.0423 (9)	-0.0001 (8)	-0.0158 (8)	-0.0109 (8)
C26	0.0565 (11)	0.0373 (8)	0.0386 (9)	-0.0133 (8)	-0.0127 (8)	-0.0057 (7)
C27	0.0447 (9)	0.0321 (8)	0.0295 (8)	-0.0070 (7)	-0.0089 (7)	-0.0042 (6)
C28	0.0558 (11)	0.0340 (8)	0.0320 (8)	0.0018 (7)	-0.0105 (7)	-0.0052 (7)
C29	0.0455 (9)	0.0295 (7)	0.0277 (7)	-0.0032 (6)	-0.0093 (7)	-0.0037 (6)
03	0.1232 (16)	0.0853 (12)	0.0995 (13)	-0.0169 (11)	-0.0701 (12)	-0.0161 (10)
O4	0.1072 (14)	0.0677 (10)	0.0714 (11)	-0.0128 (10)	-0.0318 (10)	-0.0026 (9)
C30	0.0545 (12)	0.0572 (12)	0.0760 (15)	0.0069 (10)	-0.0327 (11)	-0.0111 (11)
C31	0.0625 (13)	0.0583 (12)	0.0690 (14)	-0.0039 (10)	-0.0136 (11)	-0.0145 (11)
C32	0.0810 (15)	0.0592 (12)	0.0493 (11)	-0.0185 (11)	-0.0212 (11)	-0.0086 (10)
C33	0.0711 (13)	0.0553 (11)	0.0552 (12)	-0.0178 (10)	-0.0295 (10)	-0.0034 (9)

C34	0.0749 (14)	0.0588 (11)	0.0511.(11)	-0.0239(10)	-0.0311 (11)	-0.0017(9)
N5	0.0749(14)	0.0388(11) 0.0704(11)	0.0311(11) 0.0484(9)	-0.0119(9)	-0.0267(8)	-0.0017(9)
054	0.0672(16)	0.0704(11) 0.135(4)	0.0404(9)	0.0117(5)	-0.0375(13)	-0.064(3)
05A	0.0072(10)	0.133(4)	0.1000(19)	-0.006(3)	-0.053(13)	-0.0313(14)
O0A O5P	0.087(3)	0.0818(17) 0.125(4)	0.084(2)	-0.000(3)	-0.033(3)	-0.0313(14)
OSB OGB	0.0072(10)	0.133(4)	0.1000(19)	0.033(3)	-0.0373(13)	-0.004(3)
000	0.087(3)	0.0818(17) 0.1024(12)	0.084(2)	-0.006(3)	-0.033(3)	-0.0313(14)
07	0.0707(11)	0.1024(13)	0.1040(13)	-0.0243(10)	-0.0488(10)	-0.0304(11)
02w	0.0707 (11)	0.0983 (13)	0.0730 (11)	0.0261 (9)	-0.0143 (9)	0.0041 (9)
Geometric paran	neters (Å, °)					
Mn1—O1		2.0934 (11)	C13	—Н13А	0.9300)
Mn1—O1W		2.1462 (11)	C14	—C15	1.409	(2)
Mn1—N3		2.2596 (13)	C15	—C17	1.436	(2)
Mn1—N2		2.2821 (13)	C16	—C17	1.404	(2)
Mn1—N1		2.3027 (14)	C18	—C19	1.397	(2)
Mn1—N4		2.3480 (13)	C18	—H18A	0.9300)
01—C1		1.2556 (18)	C19	—C20	1.357	(3)
O2—C1		1.2496 (18)	C19	—H19A	0.9300)
O1W—H1A		0.8516	C20	—C26	1.402	(3)
O1W—H1B		0.8939	C20	—H20A	0.9300)
N1-C13		1.325 (2)	C21	—C22	1.340	(3)
N1-C17		1.362 (2)	C21	—C26	1.431	(3)
N2—C6		1.322 (2)	C21	—H21A	0.9300)
N2—C15		1.356 (2)	C22	—C28	1.430	(2)
N3—C25		1.322 (2)	C22	—H22A	0.9300)
N3—C29		1.3654 (19)	C23	—C24	1.361	(3)
N4—C18		1.324 (2)	C23	C28	1.403	(3)
N4—C27		1.361 (2)	C23	—H23A	0.9300)
C1—C2		1.511 (2)	C24	—C25	1.397	(2)
C2—C3		1.529 (2)	C24	—H24A	0.9300)
C2—H2A		0.9700	C25	—H25A	0.9300)
C2—H2B		0.9700	C26	C27	1.411	(2)
C3—C4		1.516 (2)	C27	—C29	1.434	(2)
С3—НЗА		0.9700	C28	—C29	1.405	(2)
С3—Н3В		0.9700	03-	C30	1.194	(3)
C4—C5		1.522 (2)	04-	-C30	1.317	(3)
C4—H4A		0.9700	O4-	-H4C	0.8500)
C4—H4B		0.9700	C30	—C31	1.497	(3)
C5-C5 ⁱ		1.514 (3)	C31	—C32	1.517	(3)
С5—Н5А		0 9700	C31	—H31A	0.9700)
C5—H5B		0.9700	C31	-H31B	0.9700)
C6—C7		1 390 (3)	C32		1 515	(3)
С6—Н6А		0.9300	C32	—H32A	0.9700)
C7—C8		1.355 (3)	C32	-H32B	0.9700)
С7—Н7А		0.9300	C33		1 502	(3)
C8—C14		1 403 (3)	C33	H33A	0.9700)
C8—H8A		0.9300	C33	-H33B	0.9700	,)
C_{0} C_{10}		1 330 (3)	014	C24 ⁱⁱ	1 510	, (4)
C3-C10		1.337 (3)	C34		1.312	(+)

C9—C14	1.424 (3)	C34—H34A	0.9700
С9—Н9А	0.9300	C34—H34B	0.9700
C10—C16	1.432 (3)	N5—O5A	1.147 (6)
C10—H10A	0.9300	N5—O6B	1.182 (5)
C11—C12	1.354 (3)	N5—O7	1.206 (2)
C11—C16	1.399 (3)	N5—O5B	1.329 (4)
C11—H11A	0.9300	N5—06A	1.344 (7)
C12—C13	1.396 (3)	O2W—H2C	0.8500
C12—H12A	0.9300	O2W—H2D	0.8500
O1—Mn1—O1W	87.16 (5)	N2-C15-C14	122.20 (17)
O1—Mn1—N3	88.76 (5)	N2—C15—C17	117.93 (14)
O1W—Mn1—N3	102.95 (5)	C14—C15—C17	119.87 (16)
O1—Mn1—N2	91.66 (5)	C11—C16—C17	117.1 (2)
O1W—Mn1—N2	162.78 (5)	C11—C16—C10	124.2 (2)
N3—Mn1—N2	94.19 (5)	C17—C16—C10	118.7 (2)
01—Mn1—N1	114.20 (5)	N1—C17—C16	122.60 (17)
O1W—Mn1—N1	92.32 (5)	N1—C17—C15	117.97 (15)
N3-Mn1-N1	153.19 (5)	C16—C17—C15	119.43 (17)
N_2 —Mn1—N1	72.51.(5)	N4-C18-C19	123.66 (17)
$\Omega_1 - Mn_1 - N4$	157.92(5)	N4-C18-H18A	118.2
01W Mn1 N4	86 23 (4)	C19-C18-H18A	118.2
$N_3 M_n 1 N_4$	72 28 (5)	C_{20} C_{19} C_{18}	118.94 (18)
N2N4	12.20(3) 100.72(5)	C_{20} C_{19} H_{19A}	120.5
N1N1N/	87.11.(5)	C_{18} C_{19} H_{19A}	120.5
C1 = O1 = Mn1	1/0.58(11)	$C_{10} = C_{20} = C_{26}$	120.3 110.83 (17)
Mp1 O1W H1A	140.38 (11)	$C_{19} = C_{20} = C_{20}$	119.85 (17)
Mn1 O1W H1R	120.0	$C_{19} = C_{20} = H_{20A}$	120.1
	120.1	$C_{20} = C_{20} = H_{20} A$	120.1
$\frac{11}{100} = \frac{11}{100} = 1$	103.5	$C_{22} = C_{21} = C_{20}$	121.07 (17)
C13 - N1 - C17	117.80 (10)	C_{22} — C_{21} — H_{21A}	119.5
C13 N1 Mr1	120.01(13) 114.28(11)	$C_{20} = C_{21} = H_{21} R_{21}$	119.5
C1/-N1-MIII	114.30 (11)	$C_{21} = C_{22} = C_{28}$	121.40 (10)
$C_0 = N_2 = C_{13}$	118.10(15) 12(.00(12))	C_{21} — C_{22} — H_{22A}	119.3
$C_0 = N_2 = M_{\rm HI}$	120.09 (12)	C28-C22-H22A	119.3
C15—N2—Mn1	115.62 (11)	$C_{24} = C_{23} = C_{28}$	119.77 (16)
C25—N3—C29	11/.81 (14)	C24—C23—H23A	120.1
C25—N3—Mn1	125.27 (11)	C28—C23—H23A	120.1
C29—N3—Mn1	116.76 (10)	$C_{23} = C_{24} = C_{25}$	118.93 (17)
C18—N4—C27	117.69 (14)	С23—С24—Н24А	120.5
C18—N4—Mn1	127.89 (11)	C25—C24—H24A	120.5
C27—N4—Mn1	113.65 (10)	N3—C25—C24	123.50 (17)
O2—C1—O1	122.44 (15)	N3—C25—H25A	118.3
O2—C1—C2	118.14 (14)	C24—C25—H25A	118.3
O1—C1—C2	119.42 (14)	C20—C26—C27	117.54 (16)
C1—C2—C3	112.98 (13)	C20—C26—C21	123.32 (16)
C1—C2—H2A	109.0	C27—C26—C21	119.14 (17)
С3—С2—Н2А	109.0	N4—C27—C26	122.33 (15)
C1—C2—H2B	109.0	N4—C27—C29	118.19 (14)
C3—C2—H2B	109.0	C26—C27—C29	119.49 (15)
H2A—C2—H2B	107.8	C23—C28—C29	117.61 (16)

C4—C3—C2	113.25 (14)	C23—C28—C22	123.34 (16)
С4—С3—Н3А	108.9	C29—C28—C22	119.05 (17)
С2—С3—НЗА	108.9	N3—C29—C28	122.27 (15)
С4—С3—Н3В	108.9	N3—C29—C27	118.00 (13)
С2—С3—Н3В	108.9	C28—C29—C27	119.72 (15)
НЗА—СЗ—НЗВ	107.7	C30—O4—H4C	110.9
C3—C4—C5	113.00 (14)	O3—C30—O4	123.4 (2)
C3—C4—H4A	109.0	O3—C30—C31	124.5 (2)
С5—С4—Н4А	109.0	O4—C30—C31	112.14 (19)
С3—С4—Н4В	109.0	C30—C31—C32	111.44 (18)
C5—C4—H4B	109.0	С30—С31—Н31А	109.3
H4A—C4—H4B	107.8	С32—С31—Н31А	109.3
C5 ⁱ —C5—C4	114.19 (18)	С30—С31—Н31В	109.3
C5 ⁱ —C5—H5A	108.7	C32—C31—H31B	109.3
C4—C5—H5A	108.7	H31A—C31—H31B	108.0
C5 ⁱ —C5—H5B	108.7	C33—C32—C31	112.29 (17)
C4—C5—H5B	108.7	С33—С32—Н32А	109.1
H5A—C5—H5B	107.6	C31—C32—H32A	109.1
N2—C6—C7	123.5 (2)	C33—C32—H32B	109.1
N2—C6—H6A	118.3	C31—C32—H32B	109.1
С7—С6—Н6А	118.3	H32A—C32—H32B	107.9
C8—C7—C6	118.9 (2)	C34—C33—C32	115.04 (17)
С8—С7—Н7А	120.5	С34—С33—Н33А	108.5
С6—С7—Н7А	120.5	С32—С33—Н33А	108.5
C7—C8—C14	120.04 (18)	С34—С33—Н33В	108.5
С7—С8—Н8А	120.0	С32—С33—Н33В	108.5
C14—C8—H8A	120.0	H33A—C33—H33B	107.5
C10—C9—C14	120.9 (2)	C33—C34—C34 ⁱⁱ	113.5 (2)
С10—С9—Н9А	119.6	С33—С34—Н34А	108.9
С14—С9—Н9А	119.6	C34 ⁱⁱ —C34—H34A	108.9
C9—C10—C16	122.0 (2)	C33—C34—H34B	108.9
С9—С10—Н10А	119.0	C34 ⁱⁱ —C34—H34B	108.9
C16—C10—H10A	119.0	H34A—C34—H34B	107 7
C12-C11-C16	120.2 (2)	05A—N5—06B	83.5 (3)
C12—C11—H11A	119.9	O5A—N5—O7	140.7 (3)
C16—C11—H11A	119.9	O6B—N5—O7	134.2 (3)
C11—C12—C13	119.1 (2)	O5A—N5—O5B	39.0 (3)
C11—C12—H12A	120.4	O6B—N5—O5B	118.1 (3)
C13—C12—H12A	120.4	O7—N5—O5B	107.6 (2)
N1—C13—C12	123.0 (2)	O5A—N5—O6A	114.4 (3)
N1—C13—H13A	118.5	O6B—N5—O6A	31.1 (2)
C12—C13—H13A	118.5	07—N5—06A	103.2 (3)
C8—C14—C15	117.25 (19)	O5B—N5—O6A	148.1 (3)
C8—C14—C9	123.68 (19)	H2C—O2W—H2D	105.9
C15—C14—C9	119.1 (2)		
O1W—Mn1—O1—C1	-86.07 (17)	Mn1—N2—C15—C14	-173.76 (12)
N3—Mn1—O1—C1	170.90 (17)	C6—N2—C15—C17	-178.53 (14)

N2—Mn1—O1—C1	76.74 (17)	Mn1—N2—C15—C17	6.19 (18)
N1—Mn1—O1—C1	5.20 (18)	C8—C14—C15—N2	-1.8 (2)
N4—Mn1—O1—C1	-158.77 (15)	C9-C14-C15-N2	177.29 (16)
O1—Mn1—N1—C13	-97.67 (15)	C8-C14-C15-C17	178.28 (16)
O1W—Mn1—N1—C13	-9.73 (15)	C9—C14—C15—C17	-2.7 (2)
N3—Mn1—N1—C13	115.53 (16)	C12-C11-C16-C17	2.2 (3)
N2—Mn1—N1—C13	178.56 (15)	C12-C11-C16-C10	-177.49 (19)
N4—Mn1—N1—C13	76.37 (15)	C9-C10-C16-C11	178.9 (2)
O1—Mn1—N1—C17	94.93 (11)	C9-C10-C16-C17	-0.8 (3)
O1W—Mn1—N1—C17	-177.14 (11)	C13—N1—C17—C16	0.0 (2)
N3—Mn1—N1—C17	-51.88 (17)	Mn1—N1—C17—C16	168.56 (13)
N2—Mn1—N1—C17	11.15 (10)	C13—N1—C17—C15	179.16 (15)
N4—Mn1—N1—C17	-91.04 (11)	Mn1—N1—C17—C15	-12.26 (17)
O1—Mn1—N2—C6	61.19 (14)	C11-C16-C17-N1	-2.2 (3)
O1W—Mn1—N2—C6	146.96 (16)	C10-C16-C17-N1	177.46 (16)
N3—Mn1—N2—C6	-27.69 (14)	C11—C16—C17—C15	178.62 (16)
N1—Mn1—N2—C6	176.08 (15)	C10-C16-C17-C15	-1.7 (2)
N4—Mn1—N2—C6	-100.43 (14)	N2-C15-C17-N1	4.2 (2)
O1—Mn1—N2—C15	-123.98 (11)	C14—C15—C17—N1	-175.80 (14)
O1W—Mn1—N2—C15	-38.2 (2)	N2-C15-C17-C16	-176.55 (14)
N3—Mn1—N2—C15	147.14 (11)	C14—C15—C17—C16	3.4 (2)
N1—Mn1—N2—C15	-9.09 (11)	C27—N4—C18—C19	1.3 (3)
N4—Mn1—N2—C15	74.40 (11)	Mn1-N4-C18-C19	-167.94 (14)
O1—Mn1—N3—C25	-14.49 (13)	N4-C18-C19-C20	-0.5 (3)
O1W—Mn1—N3—C25	-101.30 (13)	C18—C19—C20—C26	-1.1 (3)
N2—Mn1—N3—C25	77.08 (13)	C26—C21—C22—C28	0.8 (3)
N1—Mn1—N3—C25	135.54 (14)	C28—C23—C24—C25	1.8 (3)
N4—Mn1—N3—C25	177.00 (14)	C29—N3—C25—C24	1.3 (2)
O1—Mn1—N3—C29	160.80 (11)	Mn1—N3—C25—C24	176.52 (13)
O1W—Mn1—N3—C29	73.99 (11)	C23—C24—C25—N3	-3.2 (3)
N2—Mn1—N3—C29	-107.63 (11)	C19—C20—C26—C27	1.8 (3)
N1—Mn1—N3—C29	-49.17 (17)	C19—C20—C26—C21	-178.82 (18)
N4—Mn1—N3—C29	-7.71 (10)	C22-C21-C26-C20	179.20 (18)
O1—Mn1—N4—C18	146.84 (15)	C22—C21—C26—C27	-1.4 (3)
O1W-Mn1-N4-C18	73.97 (14)	C18—N4—C27—C26	-0.5 (2)
N3—Mn1—N4—C18	178.85 (15)	Mn1—N4—C27—C26	170.22 (12)
N2-Mn1-N4-C18	-90.14 (15)	C18—N4—C27—C29	179.24 (14)
N1—Mn1—N4—C18	-18.55 (14)	Mn1—N4—C27—C29	-10.02 (17)
O1—Mn1—N4—C27	-22.76 (19)	C20—C26—C27—N4	-1.0 (2)
O1W—Mn1—N4—C27	-95.63 (11)	C21—C26—C27—N4	179.60 (15)
N3—Mn1—N4—C27	9.26 (10)	C20—C26—C27—C29	179.24 (15)
N2—Mn1—N4—C27	100.26 (11)	C21—C26—C27—C29	-0.1 (2)
N1—Mn1—N4—C27	171.85 (11)	C24—C23—C28—C29	1.2 (3)
Mn1—O1—C1—O2	165.93 (12)	C24—C23—C28—C22	-178.06 (17)
Mn1—O1—C1—C2	-14.0 (2)	C21—C22—C28—C23	-179.27 (18)
O2—C1—C2—C3	50.5 (2)	C21—C22—C28—C29	1.5 (3)
O1—C1—C2—C3	-129.64 (15)	C25—N3—C29—C28	2.0 (2)
C1—C2—C3—C4	62.81 (19)	Mn1—N3—C29—C28	-173.70 (11)
C2—C3—C4—C5	175.50 (15)	C25—N3—C29—C27	-178.87 (14)

C3—C4—C5—C5 ⁱ	178.9 (2)	Mn1—N3—C29—C27	5.47 (18)			
C15—N2—C6—C7	-0.2 (3)	C23-C28-C29-N3	-3.2 (2)			
Mn1—N2—C6—C7	174.50 (14)	C22—C28—C29—N3	176.11 (15)			
N2—C6—C7—C8	-0.8 (3)	C23—C28—C29—C27	177.68 (14)			
C6—C7—C8—C14	0.4 (3)	C22—C28—C29—C27	-3.1 (2)			
C14-C9-C10-C16	1.5 (3)	N4—C27—C29—N3	3.4 (2)			
C16-C11-C12-C13	0.0 (3)	C26—C27—C29—N3	-176.81 (14)			
C17—N1—C13—C12	2.4 (3)	N4—C27—C29—C28	-177.37 (14)			
Mn1—N1—C13—C12	-164.64 (14)	C26—C27—C29—C28	2.4 (2)			
C11—C12—C13—N1	-2.4 (3)	O3—C30—C31—C32	-119.2 (2)			
C7—C8—C14—C15	0.7 (3)	O4—C30—C31—C32	59.2 (2)			
C7—C8—C14—C9	-178.27 (19)	C30-C31-C32-C33	65.7 (2)			
C10-C9-C14-C8	179.2 (2)	C31—C32—C33—C34	-169.68 (17)			
C10-C9-C14-C15	0.2 (3)	C32—C33—C34—C34 ⁱⁱ	179.1 (2)			
C6—N2—C15—C14	1.5 (2)					
Symmetry codes: (i) $-x+1, -y, -z$; (ii) $-x, -y+1, -z$.						

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
O1W—H1A···O2 ⁱⁱⁱ	0.85	1.83	2.6680 (16)	170.
O2W—H2D···O6A ^{iv}	0.85	2.24	2.991 (6)	148.
O2W—H2D····O7 ^{iv}	0.85	2.22	3.020 (2)	157.
O1W—H1B···O6B	0.89	1.87	2.710 (4)	156.
O1W—H1B···O5A	0.89	1.99	2.830 (5)	156.
O2W—H2C···O2	0.85	1.90	2.7396 (19)	170.
O4—H4C···O2W	0.85	1.78	2.622 (2)	172.

Symmetry codes: (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*-1, *y*, *z*.

Fig. 1